Approximate inference for first-order probabilistic languages

نویسندگان

  • Hanna M. Pasula
  • Stuart J. Russell
چکیده

A new, general approach is described for approximate inference in first-order probabilistic languages, using Markov chain Monte Carlo (MCMC) techniques in the space of concrete possible worlds underlying any given knowledge base. The simplicity of the approach and its lazy construction of possible worlds make it possible to consider quite expressive languages. In particular, we consider two extensions to the basic relational probability models (RPMs) defined by Koller and Pfeffer, both of which have caused difficulties for exact algorithms. The first extension deals with uncertainty about relations among objects, where MCMC samples over relational structures. The second extension deals with uncertainty about the identity of individuals, where MCMC samples over sets of equivalence classes of objects. In both cases, we identify types of probability distributions that allow local decomposition of inference while encoding possible domains in a plausible way. We apply our algorithms to simple examples and show that the MCMC approach scales well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tractable Markov Logic

Tractable subsets of first-order logic are a central topic in AI research. Several of these formalisms have been used as the basis for firstorder probabilistic languages. However, these are intractable, losing the original motivation. Here we propose the first non-trivially tractable first-order probabilistic language. It is a subset of Markov logic, and uses probabilistic class and part hierar...

متن کامل

Lifted Relax, Compensate and then Recover: From Approximate to Exact Lifted Probabilistic Inference

We propose an approach to lifted approximate inference for first-order probabilistic models, such as Markov logic networks. It is based on performing exact lifted inference in a simplified first-order model, which is found by relaxing first-order constraints, and then compensating for the relaxation. These simplified models can be incrementally improved by carefully recovering constraints that ...

متن کامل

A Tractable First-Order Probabilistic Logic

Tractable subsets of first-order logic are a central topic in AI research. Several of these formalisms have been used as the basis for first-order probabilistic languages. However, these are intractable, losing the original motivation. Here we propose the first non-trivially tractable first-order probabilistic language. It is a subset of Markov logic, and uses probabilistic class and part hiera...

متن کامل

Lifted Probabilistic Inference by First-Order Knowledge Compilation

Probabilistic logical languages provide powerful formalisms for knowledge representation and learning. Yet performing inference in these languages is extremely costly, especially if it is done at the propositional level. Lifted inference algorithms, which avoid repeated computation by treating indistinguishable groups of objects as one, help mitigate this cost. Seeking inspiration from logical ...

متن کامل

Knowledge and Data Fusion in Probabilistic Networks

Probability theory provides the theoretical basis for a logically coherent process of combining prior knowledge with empirical data to draw plausible inferences and to refine theories as observations accrue. Increases in the expressive power of languages for expressing probabilistic theories have been accompanied by refinements and adaptations of Bayesian learning methods to handle the more exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001